DIRECTORATE OF DISTANCE EDUCATION

L.N. Mithila University, Kameshwaranagar, Darbhanga-846008 (BIHAR)

Phone \& Fax : 06272-246506 Website : ddelnmu.ac.in, E-mail: director@ddelnmu.ac.in

M.Sc. (Math) Assignment, June, 2023 Final Year

COURSE CODE: MAT109

1. State and prove Bounded Convergence Theorem.
2. Let X be a set and let μ be an outer measure on X. Then prove that:
$\mathrm{M} \mu^{*}=\left\{\mathrm{A} \in \mathrm{P}(\mathrm{X}), \mathrm{A} Y \in \mathrm{P}(\mathrm{X}), \mu^{*}(\mathrm{Y})=\mu(\mathrm{Y} \cap \mathrm{A})+\mu^{*}\left(\mathrm{Y} \cap \mathrm{A}^{c}\right)\right.$
3. State and prove Fubini Theorem.

COURSE CODE: MAT110

1. Prove that the function $\{z\}^{2}$ is continuous everywhere but nowhere differentiable except at origin.
2. State and prove Cauchy's integral theorem.
3. State and prove Jordan's Lemma.

COURSE CODE: MAT111

1. Find general and singular solutions of the equation $x p^{2}-2 y p+4 x=0$.
2. Solve :

3. Solve $(y-z)(y+z-2 x) d x+(z-x)$
$(z+x-2 y) d y+(x-y)(x+y-2 z) d z=0$

COURSE CODE: MAT112

1. Discuss the Background of Set Theory.
2. Prove that union of a non-empty set of Dedekind cuts is either itself a Dedekind cut or is the set Q .
3. Let $\mathrm{f}: \mathrm{T} \mathrm{S}$ be a one-toone function mapping T on to S . If T is a well ordered set; then T induces a well ordering on S. Hence, every countable set can be well-ordered.

COURSE CODE: MAT113

1. Briefly explain the feature of harddisk with a neat diagram.
2. What is an operator? Describe various types of operators available in C language.
3. What are the different categories of functions in C? Give examples.

COURSE CODE: MAT114

1. How do you use \# define to set values of constants in your program?
2. How do you invoke a base member function from a derived class in which you have overridden that function?
3. Is it legal in C^{++}to overload the operator ++ so that it decrements a value in your class?

COURSE CODE: MAT115

1. If (A, \leq) and (B, \leq) are posets, then prove that $(A \times B, \leq)$ is a poset, with partial order \leq defined by $(a, b) \leq\left(a^{\prime}, b^{\prime}\right)$ if $a \leq a^{\prime}$ in A and $b \leq b^{\prime}$ in B.
2. Define Boolean function and prove that the number of fundamental functional form for a Boolen function of n-Variable is $(2)^{2 n}$.
3. From 7 boys and 4 girls a committee of 6 is to be formed; in how may ways can it be done when the committee contains (i) Exactly 2 girls and (ii) At least 2 girls?
